Selasa, 26 April 2011

KONSEP MOL

1 mol adalah satuan bilangan kimia yang jumlah atom-atomnya atau molekul-molekulnya sebesar bilangan Avogadro dan massanya = Mr senyawa itu.

Jika bilangan Avogadro = L maka :

L = 6.023 x 1023
1 mol atom = L buah atom, massanya = Ar atom tersebut.
1 mol molekul = L buah molekul massanya = Mr molekul tersehut.

Massa 1 mol zat disebut sebagai massa molar zat

Contoh:

Berapa molekul yang terdapat dalam 20 gram NaOH ?

Jawab:

Mr NaOH = 23 + 16 + 1 = 40
mol NaOH = massa / Mr = 20 / 40 = 0.5 mol
Banyaknya molekul NaOH = 0.5 L = 0.5 x 6.023 x 1023 = 3.01 x 1023 molekul.

Persamaan Reaksi
PERSAMAAN REAKSI MEMPUNYAI SIFAT

1. Jenis unsur-unsur sebelum dan sesudah reaksi selalu sama
2.
Jumlah masing-masing atom sebelum dan sesudah reaksi selalu sama
3. Perbandingan koefisien reaksi menyatakan perbandingan mol (khusus yang berwujud gas perbandingan koefisien juga menyatakan perbandingan volume asalkan suhu den tekanannya sama)

Contoh: Tentukanlah koefisien reaksi dari

HNO3 (aq) + H2S (g) ® NO (g) + S (s) + H2O (l)
Cara yang termudah untuk menentukan koefisien reaksinya adalah dengan memisalkan koefisiennya masing-masing a, b, c, d dan e sehingga:

a HNO3 + b H2S ® c NO + d S + e H2O
Berdasarkan reaksi di atas maka
atom N : a = c (sebelum dan sesudah reaksi)
atom O : 3a = c + e ® 3a = a + e ® e = 2a
atom H : a + 2b = 2e = 2(2a) = 4a ® 2b = 3a ® b = 3/2 a
atom S : b = d = 3/2 a

Maka agar terselesaikan kita ambil sembarang harga misalnya a = 2 berarti: b = d = 3, dan e = 4 sehingga persamaan reaksinya :

2 HNO3 + 3 H2S ® 2 NO + 3 S + 4 H2O

Rabu, 13 April 2011

FAKTOR TERJADINYA PEMANASAN GLOBAL DAN EFEK RUMAH KACA

Pemanasan global merupakan gejala kenaikan suhu di muka bumi. Hal itu terjadi karena jumlah karbon dioksida makin naik, seiring dengan kemajuan teknologi. Penyebab kenaikan itu, antara lain pemakaian bahan bakar fosil pada mesin – mesin industry dan makin berkurangnya populasi tumbuhan. Dari segi lain Yang menyebabkan terjadinya pemanasan global tersebut adalah sebagian besar bahwa kegiatan manusialah yang menjadi penyebab utama meningkatnya pemanasan global yang seringkali dikenal dengan efek rumahkaca. Efek rumah kaca memanaskan bumi melalui suatu proses yang kompleks yang berhubungan dengan sinar matahari, gas, dan partikel-partikel yang ada di atmosfer. Gas-gas yang menahan panas di atmosfer disebut gas rumah kaca. Peningkatan kandungan karbon dioksida dapat menghasilkan efek rumah kaca. Efek rumah kaca dapat menyebabkan suuhu di atmosfer naik. Jika kondisi ini dibiarkan, diperkirakan suhu bumi akan naik sekitar 2-3o pada abab yang akan datang.
Kegiatan manusia yang menimbulkan pemanasan global adalah pembakaran minyak bumi, batu bara, dan gas alam dan pembukaan lahan. Sebagian besar pembakaran berasal dari asap mobil, pabrik, dan pembangkit tenaga listrik. Pembakaran minyak fosil ini menghasilkan carbon dioxide (CO2), yakni gas rumah kaca yang menghambat radiasi panas ke angkasa ruang. Pohon-pohon dan berbagai tanaman menyerap CO2 cari udara selama proses fotosintesis untuk menghasilkan makanan. Pembukaan lahan dengan menebangi pohon-pohon ikut meningkatkan jumlah CO2 karena menurunkan penyerapan CO2, dan dekomposisi dari tumbuhan yang telah mati juga meningkatkan jumlah CO2.
Efek rumah kaca merupakan istilah yang berkaitan dengan lingkungan hidup. Efek rumah kaca disebabkan karena naiknya konsentrasi gas karbondioksida (CO2) dan gas-gas lainnya di atmosfer. Kenaikan konsentrasi gas CO2 ini disebabkan oleh kenaikan pembakaran bahan bakar minyak (BBM), batu bara dan bahan bakar organik lainnya yang melampaui kemampuan tumbuhan-tumbuhan dan laut untuk mengabsorbsinya.
Energi yang masuk ke bumi mengalami : 25% dipantulkan oleh awan atau partikel lain di atmosfer 25% diserap awan 45% diadsorpsi permukaan bumi 5% dipantulkan kembali oleh permukaan bumi.
Energi yang diadsoprsi dipantulkan kembali dalam bentuk radiasi infra merah oleh awan dan permukaan bumi. Namun sebagian besar infra merah yang dipancarkan bumi tertahan oleh awan dan gas CO2 dan gas lainnya, untuk dikembalikan ke permukaan bumi. Dalam keadaan normal, efek rumah kaca diperlukan, dengan adanya efek rumah kaca perbedaan suhu antara siang dan malam di bumi tidak terlalu jauh berbeda.
Selain gas CO2, yang dapat menimbulkan efek rumah kaca adalah sulfur dioksida , nitrogen monoksida (NO) dan nitrogen dioksida (NO2) serta beberapa senyawa organik seperti gas metana dan khloro fluoro karbon (CFC). Gas-gas tersebut memegang peranan penting dalam meningkatkan efek rumah kaca.
Meningkatnya suhu permukaan bumi akan mengakibatkan adanya perubahan iklim yang sangat ekstrim di bumi. Hal ini dapat mengakibatkan terganggunya hutan dan ekosistem lainnya, sehingga mengurangi kemampuannya untuk menyerap karbon dioksida di atmosfer. Pemanasan global mengakibatkan mencairnya gunung-gunung es di daerah kutub yang dapat menimbulkan naiknya permukaan air laut. Efek rumah kaca juga akan mengakibatkan meningkatnya suhu air laut sehingga air laut mengembang dan terjadi kenaikan permukaan laut yang mengakibatkan negara kepulauan akan mendapatkan pengaruh yang sangat besar.
Menurut perhitungan simulasi, efek rumah kaca telah meningkatkan suhu rata-rata bumi 1-5 °C. Bila kecenderungan peningkatan gas rumah kaca tetap seperti sekarang akan menyebabkan peningkatan pemanasan global antara 1,5-4,5 °C sekitar tahun 2030. Dengan meningkatnya konsentrasi gas CO2 di atmosfer, maka akan semakin banyak gelombang panas yang dipantulkan dari permukaan bumi diserap atmosfer. Hal ini akan mengakibatkan suhu permukaan bumi menjadi meningkat.
Menurut penelitian, jumlah kandungan karbon dioksida sudah meningkat 25% sejak terjadinya revolusi industri di inggris (abad ke-18) hingga sekarang. Pada tahun 2100 diperkirakan kandungan karbon dioksida meningkat dua kali lipat dibanding sebelum revolusi industri.
Pemanasan global juga dapat disebabkan oleh penggunaan CFC (Freon). CFC adalah senyawa yang banyak digunakan dalam alat – alat pendingin, antara lain AC, lemari es, dan gas pendingin pada kaleng semprot. CFC tidak berbahaya jika berada di dekat permukaan bumi. Akan tetapi, CFC menjadi berbahaya jika berada di lapisan atas atmosfer bumi Karena dapat mengikis lapisan ozon. Terutama CFC-11 dan CFC-12. Gas cholorine merupakan gas yang tidak reaktif, gas ini dapat mencapai atmosfer bumi di bagian paling atas dan berinteraksi dengan radiasi ultra violet sehingga membentuk atom cholorine. Para ilmuan meyakini bahwa setiap atom cholorine dapt merusak sepuluh dari seribu molekul ozon sehingga lapisan ozon akan semakin menipis.
Selain dapat mempengaruhi suhu udara, peningkatan jumlah kendaraan bermotor dan industri dapat menghasilkan asap yang berdampak pada kesehatan. Asap hasil pembakaran industri (pabrik dan mobil) dapat menghasilkan asbut (asap dan kabut) jika bercampur dengan kabut. Kabut adalah uap air yang mengalami kondensasi dan terletak di dekat permukaan bumi. Asbut dapat membuat iritasi mata, batuk, dan sesak nafas. Asbut sangat membahayakan kesehatan dan keselamatan. Pada tahun 1952, di kota London pernah diselimuti asbut yang mengakibatkan 4.000 orang meninggal. Pada tahun 1970, di kota Tokyo pernah tertutup asbut selama 5 hari. Akibatnya 8.000 warganya terkena iritasi mata dan hidung.
Asbut juga dapat merusak dan membunuh tumbuhan dan juga dapat mempercepat karat, mengotori, mengikis, melunturkan, dan merusak berbagai mecam benda. Hal itu terjadi karena asap yang ada di atmosfer dapat larut dalam air hujan. Akibatnya, terjadilah hujan asam. Air hujan dapat membunuh tumbuhan dan merusak bangunan.

FAKTOR TERJADINYA PEMANASAN GLOBAL DAN EFEK RUMAH KACA


Pemanasan global merupakan gejala kenaikan suhu di muka bumi. Hal itu terjadi karena jumlah karbon dioksida makin naik, seiring dengan kemajuan teknologi. Penyebab kenaikan itu, antara lain pemakaian bahan bakar fosil pada mesin – mesin industry dan makin berkurangnya populasi tumbuhan. Dari segi lain Yang menyebabkan terjadinya pemanasan global tersebut adalah sebagian besar bahwa kegiatan manusialah yang menjadi penyebab utama meningkatnya pemanasan global yang seringkali dikenal dengan efek rumahkaca. Efek rumah kaca memanaskan bumi melalui suatu proses yang kompleks yang berhubungan dengan sinar matahari, gas, dan partikel-partikel yang ada di atmosfer. Gas-gas yang menahan panas di atmosfer disebut gas rumah kaca. Peningkatan kandungan karbon dioksida dapat menghasilkan efek rumah kaca. Efek rumah kaca dapat menyebabkan suuhu di atmosfer naik. Jika kondisi ini dibiarkan, diperkirakan suhu bumi akan naik sekitar 2-3o pada abab yang akan datang.
Kegiatan manusia yang menimbulkan pemanasan global adalah pembakaran minyak bumi, batu bara, dan gas alam dan pembukaan lahan. Sebagian besar pembakaran berasal dari asap mobil, pabrik, dan pembangkit tenaga listrik. Pembakaran minyak fosil ini menghasilkan carbon dioxide (CO2), yakni gas rumah kaca yang menghambat radiasi panas ke angkasa ruang. Pohon-pohon dan berbagai tanaman menyerap CO2 cari udara selama proses fotosintesis untuk menghasilkan makanan. Pembukaan lahan dengan menebangi pohon-pohon ikut meningkatkan jumlah CO2 karena menurunkan penyerapan CO2, dan dekomposisi dari tumbuhan yang telah mati juga meningkatkan jumlah CO2.
Efek rumah kaca merupakan istilah yang berkaitan dengan lingkungan hidup. Efek rumah kaca disebabkan karena naiknya konsentrasi gas karbondioksida (CO2) dan gas-gas lainnya di atmosfer. Kenaikan konsentrasi gas CO2 ini disebabkan oleh kenaikan pembakaran bahan bakar minyak (BBM), batu bara dan bahan bakar organik lainnya yang melampaui kemampuan tumbuhan-tumbuhan dan laut untuk mengabsorbsinya.
Energi yang masuk ke bumi mengalami : 25% dipantulkan oleh awan atau partikel lain di atmosfer 25% diserap awan 45% diadsorpsi permukaan bumi 5% dipantulkan kembali oleh permukaan bumi.
Energi yang diadsoprsi dipantulkan kembali dalam bentuk radiasi infra merah oleh awan dan permukaan bumi. Namun sebagian besar infra merah yang dipancarkan bumi tertahan oleh awan dan gas CO2 dan gas lainnya, untuk dikembalikan ke permukaan bumi. Dalam keadaan normal, efek rumah kaca diperlukan, dengan adanya efek rumah kaca perbedaan suhu antara siang dan malam di bumi tidak terlalu jauh berbeda.
Selain gas CO2, yang dapat menimbulkan efek rumah kaca adalah sulfur dioksida , nitrogen monoksida (NO) dan nitrogen dioksida (NO2) serta beberapa senyawa organik seperti gas metana dan khloro fluoro karbon (CFC). Gas-gas tersebut memegang peranan penting dalam meningkatkan efek rumah kaca.
Meningkatnya suhu permukaan bumi akan mengakibatkan adanya perubahan iklim yang sangat ekstrim di bumi. Hal ini dapat mengakibatkan terganggunya hutan dan ekosistem lainnya, sehingga mengurangi kemampuannya untuk menyerap karbon dioksida di atmosfer. Pemanasan global mengakibatkan mencairnya gunung-gunung es di daerah kutub yang dapat menimbulkan naiknya permukaan air laut. Efek rumah kaca juga akan mengakibatkan meningkatnya suhu air laut sehingga air laut mengembang dan terjadi kenaikan permukaan laut yang mengakibatkan negara kepulauan akan mendapatkan pengaruh yang sangat besar.
Menurut perhitungan simulasi, efek rumah kaca telah meningkatkan suhu rata-rata bumi 1-5 °C. Bila kecenderungan peningkatan gas rumah kaca tetap seperti sekarang akan menyebabkan peningkatan pemanasan global antara 1,5-4,5 °C sekitar tahun 2030. Dengan meningkatnya konsentrasi gas CO2 di atmosfer, maka akan semakin banyak gelombang panas yang dipantulkan dari permukaan bumi diserap atmosfer. Hal ini akan mengakibatkan suhu permukaan bumi menjadi meningkat.
Menurut penelitian, jumlah kandungan karbon dioksida sudah meningkat 25% sejak terjadinya revolusi industri di inggris (abad ke-18) hingga sekarang. Pada tahun 2100 diperkirakan kandungan karbon dioksida meningkat dua kali lipat dibanding sebelum revolusi industri.
Pemanasan global juga dapat disebabkan oleh penggunaan CFC (Freon). CFC adalah senyawa yang banyak digunakan dalam alat – alat pendingin, antara lain AC, lemari es, dan gas pendingin pada kaleng semprot. CFC tidak berbahaya jika berada di dekat permukaan bumi. Akan tetapi, CFC menjadi berbahaya jika berada di lapisan atas atmosfer bumi  Karena dapat mengikis lapisan ozon. Terutama CFC-11 dan CFC-12. Gas cholorine merupakan gas yang tidak reaktif, gas ini dapat mencapai atmosfer bumi di bagian paling atas dan berinteraksi dengan radiasi ultra violet sehingga membentuk atom cholorine. Para ilmuan meyakini bahwa setiap atom cholorine dapt merusak sepuluh dari seribu molekul ozon sehingga lapisan ozon akan semakin menipis.
Selain dapat mempengaruhi suhu udara, peningkatan jumlah kendaraan bermotor dan industri dapat menghasilkan asap yang berdampak pada kesehatan. Asap hasil pembakaran industri (pabrik dan mobil) dapat menghasilkan asbut (asap dan kabut) jika bercampur dengan kabut. Kabut adalah uap air yang mengalami kondensasi dan terletak di dekat permukaan bumi. Asbut dapat membuat iritasi mata, batuk, dan sesak nafas. Asbut sangat membahayakan kesehatan dan keselamatan. Pada tahun 1952, di kota London pernah diselimuti asbut yang mengakibatkan 4.000 orang meninggal. Pada tahun 1970, di kota Tokyo pernah tertutup asbut selama 5 hari. Akibatnya 8.000 warganya terkena iritasi mata dan hidung.
Asbut juga dapat merusak dan membunuh tumbuhan dan juga dapat mempercepat karat, mengotori, mengikis, melunturkan, dan merusak berbagai mecam benda. Hal itu terjadi karena asap yang ada di atmosfer dapat larut dalam air hujan. Akibatnya, terjadilah hujan asam. Air hujan dapat membunuh tumbuhan dan merusak bangunan.

Pengelompokkan Mahluk Hidup 

Whitaker (1969) mengelompokkan mahluk hidup ke dalam lima kerajaan/regnum:
1. Regnum Monera
Monera merupakan golongan organisme yang bersifat prokariotik (inti selnya tidak memiliki selaput inti). Regnum ini dibagi menjadi dua golongan yaitu :

1.1. Golongan bakteri (Schizophyta/Schizomycetes)
1.2. Golongan ganggang biru (Cyanophyta)
2. Regnum Protista
Protista merupakan organisme yang bersifat eukariotik (inti selnya sudah memiliki selaput inti). Pembentukan regnum ini diusulkan oleh Ernst Haeckel atas pertimbangan adanya organise-organisme yagn memiliki ciri tumbuhan (berklorofil) sekaligus memiliki ciri hewan (dapat bergerak). Yang termasuk dalam regnum ini adalah :

2.1. Protozoa
2.2. Ganggang bersel satu
3. Regnum Fungi (Jamur)
Fungi merupakan organisme uniseluler (bersel satu) dan multiseluler (bersel banyak) yang tidak berklorofil, fungi multiseluler dapat membentuk benang-benang yang disebut hifa. Seluruh anggota dari regnum ini bersifat heterotrof. Regnum ini dibagi menjadi beberapa divisi yaitu:

1.1. Oomycotina
1.2. Zygomycotina
1.3. Ascomycotina
1.4. Basidiomycotina
1.5. Deuteromycotina
4. Regnum Plantae (Tumbuhan Hijau)
Meliputi organisme bersel banyak (multiseluler) dan sel-selnya mempunyai dinding sel. Hampir seluruh anggota berklorofil sehinga sifatnya autotrof. Yang termasuk dalam Regnum Plantae adalah:

1.1. Ganggang bersel banyak (diluar ganggang biru)
1.2. Lumut (Bryophyta)
1.3. Paku-pakuan (Pteridophyta)
1.4. Tumbuhan Berbiji (Spermatophyta)
5. Regnum Animalia (Kerajaan Hewan)
Meliputi organisme bersel banyak, yang sel-selnya tidak berdinding sel dan tidak berklorofil sehingga bersifat heterotrof. Yang termasuk regnum ini adalah filum
:
1.1. Porifera
1.2. Coelenterata
1.3. Platyhelminthes
1.4. Nemathelminthes
1.5. Annelida
1.6 Echinodermata
1.7 Arthropoda
1.8 Chordata

Klasifikasi Tumbuhan dan Hewan

KLASIFIKASI TUMBUHAN
Anggota +/- 500.000 - 600.000 spesies
1. ALGA/GANGGANG

Dibagi dalam beberapa kelas:
a. Chlorophyta: Ganggang Hijau
b. Chrysophyta: Ganggang Keemasan
c. Phaeophyta: Ganggang Pirang/Coklat
d. Rhodophyta: Ganggang Merah.

2. BRYOPHYTA: LUMUT

3. PTERIDOPHYTA: PAKU-PAKUAN
  Dibagi menjadi beberapa kelas:
a. Kelas Psilophytinae
b. Kelas Equisetinae
c. Kelas Lycopodinae
d. Kelas Filicinae

4. SPERMATOPHYTA ATAU TUMBUHAN BERBIJI
  Menghasilkan biji sebagai alat berkembang biak, nama lainnya Embriophyta Siphonogamae (tumbuhan berembrio yang perkawinannya melalui suatu saluran) atau Antophyta (tumbuhan berbunga) atau Phanerogamae (alat kelaminnya tampak jelas yaitu berupa benang sari dan putik).
KLASIFIKASI HEWAN
Dalam mengelompokkan hewan untuk takson filum para ahli biologi menggunakan beberapa karakteristik hewan, antara lain:
1. Uniseluler atau multiseluler
2. Diploblastik atau tripoblastik.
3. Metameri atau non metameri.
4. Asimetri, simetri radial atau simetri bilateral.
5. Anggota tubuh berbuku-buku atau tidak.
6. Mempunyai kerangka luar atau kerangka dalam.
7. Mempunyai notokord atau tidak.
8. Bentuk dan letak sistem organ.
Untuk klasifikasi hewan, yang dibahas hanya filum Chordata.
FILUM CHORDATA
ciri utama adalah (1) memiliki chorda dorsalis/notokord dan (2) tubuhnya simetris bilateral. Dibagi menjadi 4 subfilum :
1. subfilum Hemichordata
2. subfilum Tunicata/Urochordata
3. subfilum Cephalochordata
4. subfilum Vertebrata
Subfilum Vertebrata dibagi menjadi beberapa kelas:

1. Kelas Agnatha : Ikan tidak berahang
2. Chondrichtyes : Ikan bertulang rawan
3. Osteichtyes : Ikan bertulang sejati
4. Amphibi : katak dan salamander
5. Kelas Reptil : hewan melata
6. Kelas Aves : unggas
7. Kelas Mamalia : hewan menyusui
Contoh : Klasifikasi kucing
Regnum = Animalia, Filum = Chordata, Subfilum = Vertebrata, Kelas = Mamalia, Ordo = Carnivora, Famili = Felidae, Genus = Felis, Species = Felis domestica (Kucing)

Virus

Ilmu tentang Virus disebut Virologi. Virus (bahasa latin) = racun. Hampir semua virus dapat menimbulkan penyakit pada organisme lain. Saat ini virus adalah mahluk yang berukuran paling kecil. Virus hanya dapat dilihat dengan mikroskop elektron dan lolos dari saringan bakteri (bakteri filter).
SEJARAH PENEMUAN
D. Iwanowsky (1892) dan M. Beyerinck (1899) adalah ilmuwan yang menemukan virus, sewaktu keduanya meneliti penyakit mozaik daun tembakau.
Kemudian W.M. Stanley (1935) seorang ilmuwan Amerika berhasil mengkristalkan virus penyebab penyakit mozaik daun tembakau (virus TVM).
STRUKTUR TUBUH
Tubuhnya masih belum dapat disebut sebagai sel, hanya tersusun dari selubung protein di bagian luar dan asam nukleat (ARN & ADN) di bagian dalamnya. Berdasarkan asam nukleat yang terdapat pada virus, kita mengenal virus ADN dan virus ARN. Virus hanya dapat berkembang biak (bereplikasi) pada medium yang hidup (embrio, jaringan hewan, jaringan tumbuhan). Bahan-bahan yang diperlukan untuk membentuk bagian tubuh virus baru, berasal dari sitoplasma sel yang diinfeksi.
(gambar kelompok virus)
BERBAGAI VIRUS YANG MERUGIKAN
1. Pada Bakteri :
1.1. Bakteriofage.

2. Pada Tumbuhan :
2.1. Virus TMV (Tabacco Mozaik Virus) penyebab mozaik pada daun
tembakau.
2.2. Virus Tungro: penyebab penyakit kerdil pada padi. Penularan virus
ini dengan perantara wereng coklat dan wereng hijau.
2.3. Virus CVPD (Citrus Vein Phloem Degeneration) menyerang tanaman
jeruk

3. Pada Hewan :
3.1. Virus NCD (New Castle Disease) penyebab penyakit tetelo pada
ayam dan itik.

4. Pada Manusia :
4.1. Virus Hepatitis, penyebab hepatitis (radang hati), yang paling
berbahaya adalah virus Hepatitis B.
4.2. Virus Rabies >> penyebab rabies
4.3. Virus Polio >> penyebab polio
4.4. Virus Variola dan Varicella >> penyebab cacar api dan cacar air
4.5. Virus Influenza >> penyebab influensa
4.6. Virus Dengue >> penyebab demam berdarah
4.7. Virus HIV >> penyebab AIDS

Cara pencegahan penyakit karena virus dilakukan dengan tindakan vaksinasi. Vaksin pertama yang ditemukan oleh manusia adalah vaksin cacar, ditemukan oleh Edward Jenner (1789), sedangkan vaksinasi oral ditemukan oleh Jonas Salk (1952) dalam menanggulangi penyebab polio. Manusia secara alamiah dapat membuat zat anti virus di dalam tubuhnya, yang disebut Interferon, meskipun demikian manusia masih dapat sakit karena infeksi virus, karena kecepatan replikasi virus tidak dapat diimbangi oleh kecepatan sintesis interferon.

Bakteri (1 dari 2)

Dari asal kata Bakterion (yunani = batang kecil). Di dalam klasifikasi bakteri digolongkan dalam Divisio Schizomycetes.
CIRI-CIRI UMUM

- Tubuh uniseluler (bersel satu)
- Tidak berklorofil (meskipun begitu ada beberapa jenis bakteri yang memiliki pigmen seperti klorofil sehingga mampu berfotosintesis dan hidupnya autotrof
- Reproduksi dengan cara membelah diri (dengan pembelahan Amitosis)
- Habitat: bakteri hidup dimana-mana (tanah, air, udara, mahluk hidup)
- Satuan ukuran bakteri adalah mikron (10-3)
Gbr. arsitektur suatu sel bakteri yang khas

BENTUK-BENTUK BAKTERI
- Kokus : bentuk bulat, monokokus, diplokokus, streptokokus,
stafilokokus, sarkina
- Basil : bentuk batang, diplobasil, streptobasil
- Spiral : bentuk spiral, spirilium (spiri kasar), spirokaet (spiral halus)
- Vibrio : bentuk koma
ALAT GERAK BAKTERI
Beberapa bakteri mampu bergerak dengan menggunakan bulu cambuk/flagel. Berdasarkan ada tidaknya flagel dan kedudukan flagel tersebut, kita mengenal 5 macam bakteri.
- Atrich : bakteri tidak berflagel. contoh: Escherichia coli
- Monotrich : mempunyai satu flagel salah satu ujungnya. contoh:
Vibrio cholera
- Lopotrich : mempunyai lebih dari satu flagel pada salah satu
ujungnya. contoh: Rhodospirillum rubrum
- Ampitrich : mempunyai satu atau lebih flagel pada kedua
ujungnya. contoh: Pseudomonas aeruginosa
- Peritrich : mempunyai flagel pada seluruh permukaan tubuhnya.
contoh: salmonella typhosa
NUTRISI BAKTERI

  1. Dengan dasar cara memperoleh makanan, bakteri dapat dibedakan menjadi dua:
    Bakteri heterotrof: bakteri yang tidak dapat mensintesis makanannya sendiri. Kebutuhan makanan tergantung dari mahluk lain. Bakteri saprofit dan bakteri parasit tergolong bakteri heterotrof.
  2. Bakteri autotrofl bakteri yagn dapat mensistesis makannya sendiri. Dibedakan menjadi dua yaitu (1) bakteri foto autotrof dan (2) bakteri kemoautotrof.
KEBUTUHAN AKAN OKSIGEN BEBAS
Dengan dasar kebutuhan akan oksigen bebas untuk kegiatan respirasi, bakteri dibagi menjadi 2:
- Bakteri aerob: memerlukan O2 bebas untuk kegiatan respirasinya
- Bakteri anaerob : tidak memerlukan O2 bebas untu kegiatan
respirasinya.

PERTUMBUHAN BAKTERI
dipengaruhi oleh beberapa faktor :

  1. Temperatur, umumnya bakteri tumbuh baik pada suhu antara 25 - 35 derajat C.
  2. Kelmbaban, lingkungan lembab dan tingginya kadar air sangat menguntungkan untuk pertumbuhan bakteri
  3. Sinar Matahari, sinar ultraviolet yang terkandung dalam sinar matahari dapat mematikan bakteri.
  4. Zat kimia, antibiotik, logam berat dan senyawa-senyawa kimia tertentu dapat menghambat bahkan mematikan bakteri.

Ganggang

Ganggang merupakan tumbuhan yang belum mempunyai akar, batang dan daun yang sebenarnya, tetapi sudah memiliki klorofil sehingga bersifat autotrof. Tubuhnya terdiri atas satu sel (uniseluler) dan ada pula yang banyak sel (multi seluler). Yang Uniseluler umumnya sebagai Fitoplankton sedang yang multiseluler dapat hidup sebagai Nekton, Bentos atau Perifiton.
Habitat alga adalah air atau di tempat basah, sebagai Epifit atau sebagai Endofit.
Ganggang berkembang biak dengan cara vegetatif dan generatif.
BERDASARKAN PERBEDAAN PIGMEN, GANGGANG DIBAGI MENJADI 4 DIVISIO
1. CLOROPHYTA (ganggang hijau)
Mengandung pigmen hijau, yaitu klorofil
Contoh :
- Chlamydomonas sp.
- Chlorella sp.
- Euglena sp. Volvox sp. mahluk transisi antara ganggang dan
protozoa

2. CHRYSOPHYTA (ganggang keemasan)
Memiliki pigmen Karoten, disamping adanya klorofil.
Contohnya yang paling umum adalah Navicula sp. (Ganggang kresik = Diatomae), ganggang ini mengandung zat kersik yaitu silikat. Tanah yang mengandung ganggang ini disebut Tanah Diatom, baik sekali sebagai bahan lapisan pada dinamit, dapat pula digunakan sebagai bahan penggosok, saringan dan lain-lain.

3. PHAEOPHYTA (ganggang pirang=ganggang coklat)
Memiliki pigmen Fikosantin, disamping adanya klorofil. Semua anggotanya hidup di laut.

Contohnya:
- Turbinaria australis
- Sargassum siliquosum
- Fucus vesiculosus (bahan pewarna
alami)

Beberapa jenis ganggang ini menghasil-kan Asam Alginat yang berguna bagi industri tekstil dan makanan sebagai zat warna.
4. RHODOPHYTA (ganggang merah)

Memiliki pigmen Fikoeritrin, di samping ada-nya klorofil.

Contohnya:
- Eucheuma spinosum, merupakan
penghasil agar-agar.
- Gracillaria sp., menghasilkan bahan untuk
pembuatan kosmetika

Titik Acuan, Posisi, Gerak, dan Lintasan Benda

Titik acuan meruapakn titik dimulainya suatu pengukuran atau suatu titik yang menjadi standar perhitungan terhadap benda yang akan ditinjau. Misalkan jarak papan tulis adalah 2 meter dari pintu. Dengan demikian, yang menjadi titik acuannya adalah pintu dan yang ditinjaunya adalah papan tulis. Akan menjadi rancu apabila kita tidak menyebutkan suatu acuan, misalnya jarak papan tulis itu adalah 2 meter. Jarak papan tulis itu diukur dari mana. Membingungkan bukan?
Posisi adalah letak suatu benda pada suatu waktu tertentu terhadap suatu acuan tertentu.

Misalkan titik acuan pada garis bilangan berikut ini adalah titik O. Maka kita dapat menyatakan posisi titik - titik lainnya dengan menggunakan tanda positif untuk yang disebelah kanan titik acuan dan tanda negatif di sebelah kiri titik acuan. Contoh: posisi A adalah +2 dan posisi D adalah -4.
 Sedangkan bila titik C sebagai titik acuan, maka posisi A adalah +5 dan posisi D adalah -1. 
Gerak benda adalah perubahan posisi dari suatu benda pada waktu tertentu terhadap titik acuan tertentu. Suatu benda dapat dikatakan bergerak apabila posisi benda senantiasa berubah terhadap suatu acuan tertentu. 
Misalkan dua orang siswa pergi dari sekolah dengan menggunakan sepeda. Maka dua orang siswa tersebut dapat dikatakan bergerak terhadap sekolah karena terjadi perubahan posisi kedua orang tersebut terhadap titik acuan (sekolah). Tetapi apabila yang menjadi titik acuannya adalah sepeda, maka kedua siswa tersebut dikatakan tidak bergerak terhadap sepeda karena tidak terjadi perubahan posisi terhadap titik acuan (sepeda). Dengan demikian gerak benda ini bersifat relatif tergantung titik acuan yang dipakai.
Lintasan Gerak Benda adalah titik - titik posisi yang dilalui oleh suatu benda yang bergerak. Lintasan gerak benda ini dapat berbentuk lurus, parabola, ataupun berbelok.

Notasi Ilmiah

Dalam kehidupan sehari - hari kita sering menjumpai sejumlah bilagan seperti banyaknya buku tulis adalah 5 (lima) buah, Andi memiliki uang 5.000 (lima ribu) rupiah, dan sebagainya. Bilangan - bilangan tersebut mudah diucapkan dalam kata - kata dan tentunya mudah juga untuk dioperasikan (dijumlahkan, dikurangkan, dibagi ataupun dikalikan) tetapi bagaimana ketika Anda berjumpa dengan suatu bilangan yang besar sekali ataupun kecil sekali. Contohnya:

Kecepatan cahaya di ruang hampa udara adalah 299.792.458 meter per detik.

Massa elektron adalah 0,000000000000000000000000000000910938215 kg.

Utang Indonesia tahun 2010 adalah Rp. 1.878.000.000.000.000 (waduh besar sekali utang kita)

Melihat deretan angka seperti itu akan menyusahkan kita baik dalam pengucapan, perhitungan, dan juga memerlukan tempat yang lebar dalam penulisannya. Untuk mempermudah maka digunakanlah penulisan dalam bentuk bilangan sepuluh berpangkat yang selanjutnya dinamakan notasi ilmiah.

Notasi ilmiah dinyatakan:
a merupakan angka numerik hasil pengukuran dinyatakan dengan bilangan di antara 1 dan 10. Banyaknya angka disesuaikan dengan angka penting yang diinginkan.
menunjukan orde bilangan.

Cara yang dapat dilakukan untuk penulisan notasi ilmiah ini adalah:

1.Pindahkan koma desimal sampai hanya ada satu angka (antara 1 dan 10) di kiri koma desimal.

2.Hitng banyaknya angka yang dilewati ketika memindahkan koma desimal tadi. kemudian jadikan pangkat dari 10 (n).
Apabila koma desimal bergerak ke kanan maka n bertanda negatif
Contoh:
0,000000000000000000000000000000910938215 (koma desimal dipindahkan ke kanan yaitu ke belakang angka 9)
notasi ilmiah menjadi:
Apabila koma desimal bergerak ke kiri maka n bertanda positif.
Contoh:
1.878.000.000.000.000 (koma desimal dipindahkan ke kiri, yaitu ke belakang angka 1)
notasi ilmiah menjadi:
3. Bilangan a disesuaikan dengan jumlah angka penting yang diinginkan. Misalnya massa elektron ingin dinyatakan dalam 3 bilangan angka penting, maka notasi ilmiahnya menjadi:
angka 9,109382 dibulatkan menjadi 9,11 dengan aturan pembulatan sebagai berikut:
1. Bulatkan ke atas, jika

  • angka berikutnya adalah 5, 
  • angka berikutnya adalah 5 dan masih ada angka lain yang bukan 0 setelahnya, 
  • angka berikutnya adalah 5 dan angka yang akan dibulatkan adalah ganjil
contoh 9,65 dibulatkan menjadi 9,7
2. Bulatkan ke bawah, jika

  • angka berikutnya kurang dari 5, atau
  • angka berikutnya adalah 5 diikuti dengan hanya angka-angka 0 atau tidak ada angka-angka lain setelahnya dan 
  • angka yang akan dibulatkan adalah genap
contoh 9,64 dibulatkan menjadi 9,6

Jarak dan Perpindahan

Jarak dan perpindahan merupakan dua kuantitas yang terlihat sama sebelum kita mengenal definisi atau arti yang jelas. Oleh karena itu, kita mulai pembahasan mengenai jarak dan perpindahan ini dari definisi kedua besaran tersebut.
  
Jarak (distance) didefinisikan sebagai panjang lintasan yang ditempuh partikel selama melakukan geraknya. Jarak merupakan besaran skalar. Biasanya diberi simbol dengan hurup d atau s

Perpindahan didefinisikan sebagai sejauh mana perubahan posisi partikel dari suatu titik ke titik lain yang akan ditinjau. Perpindahan merupakan besaran vektor. Biasanya diberi simbol atau

Dari definisi tersebut maka kita akan melihat perbedaan yang jelas dari jarak dan perpindahan ini. Perhatikan ilustrasi berikut!

Misalkan anda melakukan perjalanan dengan menggunakan mobil dari gerbang Bandara Husein Sastranegara (Jl. Pajajaran) ke gerbang tol Pasteur. Karena tidak mendapatkan ijin untuk melalui jalan Kapten Tata Natanegara, maka anda harus melalui Jl. Pajajaran, Jl. HOS. Cokroaminoto, kemudian melalui Jl. Dr. Djunjunan seperti pada gambar diatas (jalan yang berwarna ungu).  

Dari perjalanan tersebut, maka yang dimaksud jarak perjalanan  panjang lintasan yang ditempuh mobil ketika melalui Jl. Pajajaran (sejauh 1 km), Jl. HOS. Cokroaminoto (sejauh 650 m), dan Jl. Dr. Djunjunan (sejauh 2,1 km).  Jadi jarak yang ditempuh mobil adalah 1 km + 0,65 km + 2,1 km = 3,75 km. 

Sedangkan perpindahannya adalah seperti panjang garis yang ditarik dari posisi awal (titik A) ke posisi akhir (titik B) yaitu sekitar 2,7 km. 

Untuk lebih jelasnya lagi, perhatikan ilustrasu gerak partikel pada garis bilangan berikut:

Sebuah partikel bergerak dari titik O ke titik B kemudian berbalik arah ke titik D.

Jarak tempuh partikel = panjang AB + panjang BD = 6 + 10 = 16 satuan

Perpindahan partikel = posisi akhir - posisi awal = -4 - 0 = - 4 satuan (ingat bahwa perpindahan merupakan besaran vektor sehingga memiliki dua komponen yaitu besar dan arah . tanda negarif (-) menunjukan arah gerak).

Dari ilustrasi di atas, terlihat bahwa perpindahan hanya melihat posisi awal dan posisi akhir dari suatu benda. Secara matematis perpindahan suatu partikel dari titik A ke titik B untuk gerak satu dimensi dituliskan dalam bentuk persamaan berikut ini:

Cara Mengukur Panjang Dengan Mistar Geser (Jangka Sorong) dan Membaca Skalanya

Salah satu alat ukur yang digunakan dalam pengukuran panjang adalah mistar geser atau kita lebih mengenalnya dengan istilah jangka sorong (caliper). Jangka sorong terdiri dari dua jenis, yaitu jangka sorong digital dan jangka sorong analog. 
Jangka Sorong Digital
Jangka Sorong Analog








































Jangka sorong analog memiliki ketelitian sampai seperseratus milimeter (0,01 mm).  Bagian - bagian jangka sorong terdiri atas:





1. Rahang dalam
Rahang dalam digunakan untuk mengukur sisi luar dari suatu benda. Terdiri atas rahang tetap dan rahang geser.



2. Rahang luar
Rahang luar digunakan untuk mengukur sisi dalam dari suatu benda. Terdiri atas rahang tetap dan rahang geser.


3. Depth probe
Depth probe digunakan untuk mengukur kedalaman dari suatu benda.

4. Skala Utama (dalam cm)
Pada skala utama, angka 0 - 17 menunjukan skala dalam cm sedangkan garis - garis yang lebih pendeknya dalam mm. Sepuluh skala utama memiliki panjang 1 cm sehingga dua sekala utama yang berdekatan berukuran 0,1 cm atau sama dengan 1 mm.


5. Skala utama (dalam inchi)
Pada skala utama, angka 0 - 6 menunjukan skala dalam inchi sedangkan garis - garis yang lebih pendeknya dalam fraksi.

6. Skala nonius (dalam 1/10 mm)
Pada jangka sorong di atas, untuk setiap garis skala menunjukan 1/10 mm. Tetapi ada juga yang memiliki skala 1/20, dll. Sepuluh skala nonius memiliki panjang 9 mm, sehingga jarak dua skala nonius yang saling berdekatan adalah 0,9 mm. Dengan demikian, perbedaan satu skala utama dan satu skala nonius adalah 1 mm - 0,9 mm = 0, 1 mm atau 0,01 cm
Dengan melihat skala terkecil dari jangka sorong ini, maka ketelitian dari jangka sorong adalah setengah dari skala terkecil jangka sorong tersebut, yaitu: atau 0,005 cm

7. Skala Nonius (untuk inchi)
Menunjukan skala pengukuran fraksi dari inchi

8. Pengunci
Digunakan untuk menahan bagian - bagian yang bergerak ketika pengukuran seperti rahang atau Depth probe



Fungsi dari jangka sorong adalah:


1. Untuk mengukur sisi luar dari suatu benda, misalkan untuk diameter batang besi. 


Cara pengukuran:
  • Putar pengunci berlawanan arah dengan arah jarum jam.
  • Geser rahang kanan.
  • Masukan benda yang akan diukur ke antara kedua rahang bawah jangka sorong.
  • Geser rahang sampai tepat pada tepi benda.
  • Putar pengunci searah jarum jam agar rahang tidak bergeser.
  • Baca skala utama dan skala noniusnya.  
untuk mencoba mengukur sisi luar dengan jangka sorong secara online silahkan klik di sini .
Untuk download tutorial flash jangka sorong klik JANGKA SORONG.swf


2. Untuk mengukur sisi dalam suatu benda 
Cara pengukuran:
  • Putar pengunci berlawanan arah dengan arah jarum jam.
  • Masukkan rahang bagian atas ke dalam benda yang akan diukur. 
  • Geser rahang tepat pada benda dan putar pengunci searah jarum jam agar rahang tidak bergeser.
  • Bacalah skala utama dan skala noniusnya. 

3. Untuk mengkuru kedalaman suatu benda.
Cara pengukuran:
  • Putar pengunci berlawanan arah dengan arah jarum jam.
  • Buka rahang jangka sorong hingga ujung lancip menyentuh dasar benda.
  • Putar pengunci searah jarum jam agar rahang tidak bergeser.
  • Bacalah skala utama dan skala noniusnya.

Template by:

Free Blog Templates